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In a range of physical systems, the first instability in Rayleigh-Bérnard convection between nearly thermally
insulating horizontal plates is large scale. This holds for thermal convection of fluids saturating porous media.
Large-scale thermal convection in a horizontal layer is governed by remarkably similar equations both in the
presence of a porous matrix and without it, with only one additional term for the latter case, which, however,
vanishes under certain conditions �e.g., two-dimensional flows or infinite Prandtl number�. We provide a
rigorous derivation of long-wavelength equations for a porous layer with inhomogeneous heating and possible
pumping.
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Rayleigh-Bérnard convection—i.e., a thermal buoyancy
convection in a layer confined between two rigid horizontal
plates and uniformly heated from below—is one of the clas-
sical problems of fluid dynamics. When the bounding plates
are nearly thermally insulating, the first instability of the heat
conductive state �quiescent state� of the layer is long wave-
length �large scale� �1–4�; i.e., horizontal gradients of the
fluid velocity field are small compared to vertical ones and,
thus, the horizontal scale of the flow is large compared to the
layer height. For large-scale patterns, temperature perturba-
tions � are nearly uniform along the vertical coordinate z and
in terms of ��x ,y� the problem is two dimensional �2D�.
Making allowance for the heating inhomogeneity, one can
find

�t� + �2� − �� · ��s�� + �� · �q�x,y��� � − �� ���� ��2� = 0, �1�

�s� = 0, ��� � s��z � B =
3

2Pr
��� � ��� �����z. �2�

Here �t denotes the partial time derivative, q�x ,y� is the rela-
tive departure of the heat flux �imposed by the heating�
through the boundaries from the critical value for a homoge-
neous heating, the Prandtl number Pr=� /� is the ratio of the
kinematic viscosity and the heat diffusivity, s� is responsible
for advectional heat transfer. Knobloch �5� has discussed pat-
tern selection for Eq. �1� with uniform q and s�=0, which is
relevant, e.g., to Pr→� or 2D setups where flows are homo-
geneous in the y direction. Later on, the term missing in �5�
was accounted for in �6�. Remarkably, in �7�, equations simi-
lar to �1� have been obtained for large-scale turbulence in
Rayleigh-Bérnard convection.

Various problems related to large-scale thermal convec-
tion in porous media have been repeatedly addressed in the
literature �e.g., �3,4��. However, researches typically either
deal with the case of a rectangular cavity with a large aspect
ratio ��3�, where no equations similar to �1� and �2� have
been derived� or discuss a finite departure from the stability
threshold ��4�; such a departure leads to discontinuities of the
velocity field, which cannot be treated within the framework
of the long-wavelength approximation�. Pattern formation
under heating inhomogeneity has been rather extensively
studied for thin films �e.g., �8� and references therein� owing
to important technical applications �rupture of lubricating

films �9�, etc.�. To the authors’ knowledge, for porous media
an equation system similar to �1� and �2� has not been pre-
sented in the literature.

In this Brief Report, we introduce the specific physical
system we deal with. Then we derive the equation of large-
scale convection for this system and find that it is similar to
Eqs. �1� and �2� with B=0, though the relationships between
the flow and the temperature perturbation are different for
different fluid dynamical systems �4,6,7�.

Let us consider convection of a fluid saturating a horizon-
tal porous layer heated from below. Boundaries are imper-
meable; the heat flux across the layer is fixed �implying the
heat diffusivity of the boundaries is small compared to the
one of the porous matrix saturated with the fluid�, but inho-
mogeneous along the layer. Relaxation of the local tempera-
ture difference between the porous matrix and the fluid is
assumed to be fast, and we do not introduce several tempera-
tures for them. For small perturbations of the temperature
about T0, one may guess a linear dependence of the fluid
density on the temperature: 	�T�=	0(1−
�T−T0�), where
	0=	�T0� and 
= ��	 /�T�p. The reference frame is such that
the �x ,y� plane is horizontal; z=0 and z=h are the lower and
upper layer boundaries, respectively. We adopt the conven-
tional Darcy-Boussinesq approximation �2�

0 = − 	0
−1�� p − �K−1v� + g
Te�z, �3�

�tT + b−1�� · �v�T� = ��T , �4�

�� · v� = 0, �5�

z = 0,h: vz = 0, �zT = − A�1 + q�x,y�� , �6�

where v� is the macroscopic filtration velocity, K the perme-
ability, g� =−ge�z the gravity, b the specific heat capacity of the
saturated porous medium divided by the one of the fluid, �
the heat diffusivity of the saturated porous medium, and
�CpA�1+q�x ,y�� the imposed heat flux �Cp is the specific
heat capacity�.

It is convenient to measure the length by layer height h,
time by h2 /�, the velocity by b� /h, the temperature by Ah,
and the pressure by b	0�� /K. The dimensionless parameter
governing the behavior of the system is the Rayleigh-Darcy
number R=
Ah2gK /b��.

The dimensionless form of system �3�–�6� reads
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− �� p − v� + RTe�z = 0, �7�

�tT + �� · �v�T� = �T , �8�

�� · v� = 0, �9�

z = 0,1: vz = 0, �zT = − 1 − q�x,y� . �10�

For a uniform fixed heat flux the first instability is known
to be long wavelength �2�. This holds for q�x ,y� slowly vary-

ing in the boundary plane: ��� q� / �q����1. In order to avoid
large temperature gradients, which correspond to jumps of
derivatives of fields in the long-wavelength limit �4�, we re-
strict ourselves to a small supercriticality. Below we will find
the critical value RC for a homogeneous heating and set R
=RC; hence, near-critical regimes occur for small q�x ,y�,
which may be thought to measure the relative departure of
the Rayleigh-Darcy number from the critical value.

Owing to Eq. �9� the horizontal component of velocity v�
is large compared to the vertical one because variations of
velocity v� by shifts along the horizontal directions are small
compared to ones by shifts transversal to the layer. Let us
explicitly account for this fact, v� =we�z+�−1u� , where u� is the
horizontal component of the filtration velocity field and w is
the vertical one. Rescaling the horizontal coordinates �x ,y�
→ ��−1x ,�−1y�, explicitly writing q�x ,y�=�2q2�x ,y�, and pro-
jecting momentum conservation law �7� onto the vertical and
horizontal directions, one may rewrite equation system
�7�–�10� in a form convenient for the further treatment,

− �zp − w + RT = 0, �11�

u� = − �2�� 2p , �12�

�tT + �z�wT� + �� 2 · �u�T� = �z
2T + �2�2T , �13�

�zw + �� 2 · u� = 0, �14�

z = 0,1: w = 0, �zT = − 1 − �2q2�x,y� . �15�

Here the subscript “2” for spatial derivatives means differen-
tiation with respect to two horizontal coordinates.

Since � appears squared in �11�–�15�, only even powers of
� are present in the expansion: w=w0+�2w2+�4w4+¯, T
=T0+�2T2+�4T4+¯, etc. The long-wavelength approxima-
tion assumes a weak spatial inhomogeneity of temperature
perturbations which results in a slow temporal evolution.
With only even powers of � in the expansion, one expects
characteristic times of the evolution of large-scale patterns to
be not less than 
�−2; therefore, in terms of “slow” times,
�t=�2�t2

+�4�t4
+ ¯ .

�0: In the leading order, the problem �11�–�15� yields

− �zp0 − w0 + RT0 = 0, �16�

u�0 = 0, �17�

�z�w0T0� + �� 2 · �u�0T0� = �z
2T0, �18�

�zw0 + �� 2 · u�0 = 0, �19�

z = 0,1: w0 = 0, �zT0 = − 1. �20�

From Eqs. �19� and �17�, �zw0=0, w0=C1�x ,y�=0 �C1=0
due to the boundary conditions �BCs��. From Eq. �18�,

�z
2T0=0—i.e., T0=C2�x ,y�z+��x ,y�; accounting for BCs

�20�, one obtains

T0 = − z + ��x,y� , �21�

where ��x ,y� should be determined from higher orders of the
expansion while here it appears as an unknown function of
the horizontal coordinates.

From Eq. �16�, �zp0=RT0=−Rz+R��x ,y�,

p0 = − 1
2Rz2 + R��x,y�z + �0�x,y� , �22�

where �0�x ,y� is unknown in this order of the expansion.
�2:

− �zp2 − w2 + RT2 = 0, �23�

u�2 = − �� 2p0, �24�

�t2
T0 + �z�w2T0� + �� 2 · �u�2T0� = �z

2T2 + �2T0, �25�

�zw2 + �� 2 · u�2 = 0, �26�

z = 0,1: w2 = 0, �zT2 = − q2�x,y� . �27�

From Eq. �24�,

u�2 = − �� 2p0 = − Rz�� 2��x,y� − �� 2�0�x,y� .

From Eq. �26�,

�zw2 = − �� 2 · u�2 = Rz�2��x,y� + �2�0�x,y� ,

w2 = 1
2Rz2�2��x,y� + �2�0�x,y�z + C3�x,y� .

BCs �27� for the velocity field yield

z = 0: C3 = 0,

z = 1: �2�0�x,y� = − 1
2R�2��x,y� .

From the latter BC,

�0�x,y� = − 1
2R��x,y� + �0�x,y�, �2�0�x,y� = 0.

Note that 	u�2
=−�2�0 �henceforth, 	f
��0
1f dz�. Let us

consider a layer domain limited in the horizontal directions
by boundary � �to keep it simple, we assume � to be verti-
cal�, where a fixed fluid gross flux �or its absence; “gross”
means averaged over z, and, in particular, the absence of the
gross flux does not necessarily claim the absence of the flux�
is imposed. Mathematically, this means that the orthogonal to
� component of 	u�2
 is fixed: 	u�2
n=Q �Q is not uniform
along �; owing to mass conservation, ��Q d�=0�. Hence,
one obtains the boundary problem for �0�x ,y�,

�2�0 = 0, ��n�0�� = − Q, �
�

Q d� = 0, �28�

where �n is the orthogonal to � component of the gradient.
This problem has a unique solution �up to an insignificant
constant� unambiguously defined by Q. Thus, �0�x ,y� de-
scribes an imposed advection �pumping� in the layer, which
is caused and unambiguously controlled by BCs on � �the
pressure or the fixed gross flux�. As soon as we consider a
near-critical behavior, it makes sense to not allow for an
imposed advection in the leading order; otherwise, a moder-
ately strong advection would overpress the effect of a weakly
inhomogeneous heating. We set
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�0�x,y� = 0 �29�

and will take the imposed advection into account in higher
orders.

With �29�, one can write down

u�2 = − R�z − 1
2��2��x,y� , �30�

w2 = 1
2R�z2 − z��2��x,y� . �31�

Let us now integrate �25� over z� �0,1�:

�t2
	T0
 + 	�z�w2T0�
 + �� 2 · 	u�2T0
 = 	�z

2T2
 + �2	T0
 . �32�

Due to BCs �27�, �0
1�z�w2T0�dz=w2T0�z=0

1 =0 and �0
1�z

2T2dz
=�zT2�z=0

1 =−q2�x ,y��z=0
1 =0, whereas

�� 2 · 	u�2T0
 = − �� 2 · 	u�2z
 + �� 2 · �	u�2
�� .

Substituting �30� into the first term of the right-hand side of

the last equation and accounting for 	u�2
=−�� 2�0=0, one
finds

�� 2 · 	u�2T0
 = R�2�	z2 − z/2
 = �R/12��2� .

For the rest of the terms in Eq. �32�, �t2
T0=�t2

� and �2T0

=�2�, and Eq. �32� finally reads

�t2
� = �1 − R/12��2� . �33�

For R�12, Eq. �33� is a conventional diffusion equation,
and for trivial BCs �on �� or an infinite layer, all inhomoge-
neities of � decay. For R�12, it is a diffusion equation with
a negative diffusivity, where all the inhomogeneous pertur-
bations grow. Thus, R=12 is the linear stability threshold of
the system. Note that nonlinearity does not play a role in this
order of the expansion. In order to account for nonlinear
effects and the dependence of the linear stability on the
wavelength �now all the perturbations either grow or decay
regardless to their wavelength�, we should restrict ourselves
to the vicinity of the stability threshold. For this purpose, we
set

R = RC = 12

and introduce departure from the threshold via q. Since the
local Rayleigh-Darcy number �“local” means defined for a
small domain of the layer� Rlocal=R�1+q�, positive q corre-
sponds to a supercritical regime and negative q does to a
subcritical one. As soon as R=12, �t2

�=0; therefore, we
should consider a slower evolution, �t�=�4�t4

�+¯.
Let us now derive T2 from Eq. �25�:

�z
2T2 = �z�w2T0� + �� 2 · �u�2T0� − �2T0,

T2 = − � 3
2z4 − 2z3��2� + �2z3 − 3z2���2� + �z4 − z3��2�

− �2z3 − 3z2��� 2 · ���� 2�� − 1
2z2�2� + C4�x,y�z + �2�x,y� .

Due to the relation �� 2 · ���� 2��=��2�+ ��� 2��2, one can elimi-
nate the term ��2� from the expression for T2:

T2 = �− 1
2z4 + z3 − 1

2z2��2� + �− 2z3 + 3z2���� 2��2

+ C4�x,y�z + �2�x,y� . �34�

Owing to BCs �27�, C4�x ,y�=−q2�x ,y�; �2�x ,y� is still unde-
fined.

Remarkably, � and �2 depend on z in one and the same
fashion �i.e., are uniform along z� and are for the moment
undetermined functions of x and y. Hence, �2 may be chosen
as one needs, and this will be automatically balanced by �.
Let us use this fact. Notice that

	T
 = − 1
2 + ��x,y� + �2	T2
 + O��4�;

therefore, if one defines �2 in such a way as to make 	T2

=0, then � will be a z-mean temperature up to the truncation
accuracy of our expansion—i.e., �4. Thus,

	T2
 = − 1
60�2� + 1

2 ��� 2��2 − 1
2q2�x,y� + �2�x,y� = 0,

�2 = 1
60�2� − 1

2 ��� 2��2 + 1
2q2. �35�

Finally,

T2 = �− 1
2z4 + z3 − 1

2z2 + 1
60��2�

+ �− 2z3 + 3z2 − 1
2���� 2��2 + �− z + 1

2�q2. �36�

From Eq. �23� follows �zp2=−w2+RT2, and, integrating it
with respect to z, one finds the pressure

p2 = �− 6
5z5 + 3z4 − 4z3 + 3z2 + 1

5z��2�

+ �− 6z4 + 12z3 − 6z���� 2��2 + �− 6z2 + 6z�q2 + �2�x,y� .

�37�

�4: As we will not construct the expansion beyond this
order, we do not have to consider all the equations. The
following is sufficient:

u�4 = − �� 2p2, �38�

�t4
T0 + �z�w4T0� + �� 2 · �u�4T0� + �z�w2T2� + �� 2 · �u�2T2�

= �z
2T4 + �2T2, �39�

�zw4 + �� 2 · u�4 = 0, �40�

z = 0,1: w4 = 0, �zT4 = 0. �41�

Without calculating u�4, we may substitute �38� directly
into �40�: �zw4=�2p2. Then

w4 = �− 1
5z6 + 3

5z5 − z4 + z3 + 1
10z2��2

2�

+ �− 6
5z5 + 3z4 − 3z2��2��� 2��2

+ �− 2z3 + 3z2��2q2 + z�2�2. �42�

From BCs �41�,

�w4�z=1 = 0 = 1
2�2

2� − 6
5�2��� 2��2 + �2q2 + �2�2;

therefore,

�2 = − 1
2�2� + 6

5 ��� 2��2 − q2 + �2,

where �2�2=0.
Notice, making use of Eq. �37�, one can calculate
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	u�4
 = − �� 2	p2
 = − �� 2�2�x,y� .

We have already established the relationship between 	u�2

and �0 and found �0 to describe an imposed advection. We
have set �0=0, but now it makes sense to keep �2, since it
describes an advection imposed by lateral boundary condi-
tions.

Substituting �2 into Eq. �42�, one obtains the final expres-
sion

w4 = �− 1
5z6 + 3

5z5 − z4 + z3 + 1
10z2 − 1

2z��2
2�

+ �− 6
5z5 + 3z4 − 3z2 + 6

5z��2��� 2��2

+ �− 2z3 + 3z2 − z��2q2. �43�

Now the integration of Eq. �39� over z� �0,1� yields the
evolution equation for �:

�t4
� + 	�z�w4T0�
 + �� 2 · 	u�4T0
 + 	�z�w2T2�
 + �� 2 · 	u�2T2


= 	�z
2T4
 + �2	T2
 .

The mean values of all z derivatives are zero due to BCs;
additionally, 	T2
=0. The remainder is

�t4
� + �� 2 · 	u�4T0 + u�2T2
 = 0. �44�

With T0, T2, p2, and u�2 known, one can find

�� 2 · 	u�4T0
 = − �� 2 · 	T0�� 2p2
 = 2
21�2

2� − �� 2 · ���� 2�2� , �45�

�� 2 · 	u�2T2
 = − �� 2 · � 6
5�� 2���� 2��2 − q2�� 2�� . �46�

Substituting �45� and �46� into Eq. �44�, one obtains the
slow evolution equation for � in the final form which is simi-
lar to Eq. �1�:

�t� + U� · �� � + 2
21�2� − �� · � 6

5�� ���� ��2 − q�� �� = 0. �47�

Here the imposed advection U� �−�� �= 	u�
, �� ·U� =0, sub-
scripts “2” for differential operators are omitted as all the
fields depend on x and y only, and indices indicating the
smallness order are also omitted as this equation remains

valid in original terms �without formal smallness parameter
��. From Eqs. �30� and �31� the fluid flow up to the leading
order of accuracy is

v� = 6�1 − 2z��� ��x,y� + 6�z2 − z����x,y�e�z.

Advection speed U
�3 is small against u
� when flow is
excited, but is important due to its properties: in contrast to

u� , U� provides a nonzero gross fluid flux through a vertical
cross section of the layer.

Note that the heating inhomogeneity makes the quiescent
state impossible, and from Eqs. �36� and �43� it follows that
below the convective instability threshold, when � decays to
zero, the establishing state has nontrivial

wBG = �− 2z3 + 3z2 − z��q, TBG = � 1
2 − z�q − z . �48�

However, these fields are small against the fields excited
above the threshold.

Remarkably, Eq. �47� holds for the case of a uniform heat-
ing and a weakly inhomogeneous porous matrix. In the most
general case, q�x ,y� should be replaced with

qgen�x,y� = q�x,y� +
K�x,y�

b�x,y���x,y�
b0�0

K0
− 1

�meanwhile, the background state �48� for this general case
cannot be obtained via the plain replacement of q by qgen�.
This remark is important for experiments as it is more con-
venient to maintain and control a uniform heating of the
layer with a weak inhomogeneity of the structure of the po-
rous matrix, which is inevitable in real systems. Owing to the
same reason, the physical system we have discussed is the
most relevant one for works �10� addressing phenomena re-
lated to spatially localized convective currents excited under
parametric disorder �frozen randomly inhomogeneous q
=q�x��.
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